
MOBILITY 101:

KNOW YOUR ELECTRIC VEHICLES

01 WHAT ARE ELECTRIC VEHICLES?

Plug-in electric vehicles, or EVs, are vehicles that are either **partially or fully powered by electricity.** They function by plugging into a designated **EV charging point** and drawing electricity from an **electric grid**.

EVs store electricity in **rechargeable batteries** that power an **electric motor**, which turns the wheels. Through a process of **regenerative braking**, the motor converts some of the kinetic energy that is typically lost when braking/decelerating into energy that is stored in the batteries. Thus, when the car accelerates, it **reuses** the stored energy in the batteries to power itself instead of further depleting energy from its own reserves.

The flow of power during regenerative braking

Did you know? As of 2019, roughly 1,451,404 EVs were sold in the United States, with California leading the market with a 48% share of national sales (700,110 EVs sold).

02 TYPES OF EVS

AEVs (All-electric vehicles)

+ Powered by 1+ electric motors

- + Plugs into an electric grid to charge
- + Does not consume

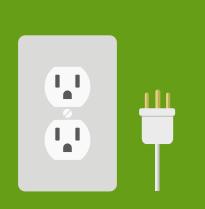
petroleum-based fuel & produce any tailpipe emissions

+ Includes Battery Electric Vehicles (BEVs) & Fuel Cell Electric Vehicles (FCEVs) **Efficient EVs:** Up to 80 percent of the energy in the •battery is transferred directly to power the car, whereas gasoline-powered vehicles only utilize 14-26 percent.

PHEVs (Plug-in hybrid electric vehicles)

+ Powered by a petroleum-based internal combustion engine (ICE) and an electric motor that draws energy stored in a battery

+ Plugs into an electric grid to charge + Also known as Extended-Range Electric Vehicles (EREVs)


4

HEVs (Hybrid electric vehicles)

+ Powered by a petroleum-based internal combustion engine (ICE) & an electric motor that draws energy stored in a battery

+ Does not plug into an electric grid to charge; the battery charges via regenerative braking and the ICE

03 TYPES OF EV CHARGE POINTS

Level 1: AC*

Voltage Standard 120V household outlet

Amps 12 - 16 amps

Charging Load 1.4 - 1.9 kW

Vehicle Charge Time 17 - 25 hours; 4-5 miles of range/hr. of charging

Location Residential homes

Requirements None *AC = Alternating Current

Level 2: AC

Voltage Supply from 208V or 240V outlet

Amps 12 - 80 amps (typically 32 Amps)

Charging Load 2.5 - 19.2 kW

Vehicle Charge Time 3 - 8 hours; 10 - 20 miles of range/hr. of charging

Location Public areas (shopping centers, workplaces, etc.)

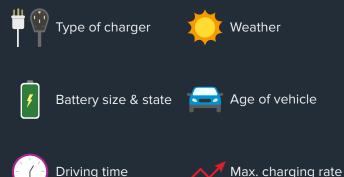
Requirements In-home charging unit

of charge point

Level 3: DC Fast Charge

Voltage Supply from 208V or 480V outlet

Amps < 125 amps (typically 60 amps)


Charging Load < 90 kW

Vehicle Charge Time 20 min. - 1 hour; 20 - 70 miles of range/20-30 min. of charging

Location Found in high-traffic public areas

Requirements 3-phase AC input & DC (direct <u>current)</u> fast charging capability

04 FACTORS THAT IMPACT CHARGING TIME

05 TO BUY OR NOT TO BUY?

Pros

+ More energy-efficient & guieter than gas vehicles

- + Zero emissions
- + Cheaper operating &
- maintenance costs
- + Eligible for tax credits
- + Qualifies for HOV /

carpool lane

Cons

- + **Shorter** miles per charge range
- + Takes **time** to recharge
- + Higher initial costs
- + **Inconsistent** charging station availability
- + Fewer model options